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1. INTRODUCTION

Myalgia, also called muscle pain or muscle ache, is a 

painful sensation that origins from muscle and commonly 
occurs in musculoskeletal diseases, fibromyalgia, and 
other systematic diseases (1). Globally, one third of people 
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mood disorder, especially in those with fibromyalgia, 
myofascial pain syndrome, chronic fatigue syndrome, and 
phycological somatization disorder (14,16).

Treatment of myalgia usually depends on the 
underlying causes. Experimental treatment may include 
physical therapy, heat, rest, pain control, and muscle 
relaxants. However, there are no established guidelines 
or expert consensus on how to effectively treat common 
or mild myalgia. For severe myalgia like fibromyalgia, 
effective treatments remain an unmet medical need (5). 
Moreover, we have recently shown soreness and pain are 
2 distinguished dominant symptoms in myalgia associated 
with fibromyalgia and degenerative diseases (13,15,17-19). 
Although morbid soreness is a major complaint among 
patients, it is not properly treated as pain. Of note, current 
analgesics (e.g., TCA or pregabalin) are less effective for 
morbid soreness as compared with pain in fibromyalgia (15).

2.2 Tissue acidosis and myalgia
Local metabolic changes and peripheral nociceptive 

processes are thought to be involved in the development of 
muscle pain in humans (20,21). Especially, protons and ATP 
are particularly relevant causes of myalgia (22). Biochemical 
analyses had shown local acidosis and increased levels 
of substance P in the trigger points of myofascial pain 
(23). A recent study has shown intramuscular pressure 
is 3 times higher in fibromyalgia patients as compared 
with rheumatic disease controls (24). The compressing 
effects on small capillaries in muscle would lead to 
an ischemic condition, prevent adequate oxygenation 
of muscle tissue, and result in tissue acidosis. Indeed, 
muscle blood flow of fibromyalgia patients is impaired 
even in relatively low contraction levels, suggesting 
muscles are frequently forced to work under ischemic 
conditions and thus sensitize muscle mechanonociceptors 

(25-27). Of note, muscle ischemia/acidosis can effectively 
sensitize muscle mechanonociceptors (28-30). In humans, 
the causal relationship between muscle acidosis/ischemia 
and myalgia have been experimentally proved. Muscle 
ischemia or intramuscular infusion acidic phosphate buffer 
(pH5.2) induce muscle pain in healthy volunteers (31,32). 
Several studies have indicated acid-sensing ion channels 
(ASICs) or TRPV1 channels are possible molecular 
determinants involved in the acid-induced muscle pain 
in humans (33,34). However, the role of muscle acidosis in 

suffer from myalgia, which causes significantly disability 
and poor quality of life (2). Especially, chronic muscle 
pain is a major medical problem affecting millions of 
people globally. The lifelong prevalence of this major 
global health problem affects 60~85% of the population 

(3). Myalgia could be caused by irritation of the receptors 
in muscle and fascia due to muscle overuse, inflammation, 
infection, or injury, as well as degenerative diseases, 
stress, and tension (1,4). However, our understanding how 
muscle pain become chronic and intractable is still limited 
and the effective treatment for chronic myalgia such as 
fibromyalgia is still challenging (5).

Fibromyalgia is the most common intractable myalgia 
affecting 0.2~6.6% in the general population (6). Up to date, 
fibromyalgia is still a mysterious disease characterized 
with chronic widespread muscle pain and generalized 
tenderness without knowing the exact disease-causing 
factors. Although fibromyalgia pain is generally believed 
as stress-associated and due to the central sensitization 
of the pain matrix in the brain, the pathophysiology and 
effective treatments remains controversial. Recent studies 
have made efforts to elucidate peripheral risk factors that 
could effectively trigger fibromyalgia pain (7-9). Here, we 
aim to review how the peripheral risk factors could lead 
to the non-inflammatory chronic widespread pain and 
provide mechanistic insights for further development of 
effective treatment for fibromyalgia.

2. TISSUE ACIDOSIS, OXIDATIVE 
STRESS, AND MYALGIA

2.1 Clinical aspects of myalgia
The causes of myalgia can be simple or multifactorial 

and its classification is based on diffuse myalgia or 
focal symptoms (1). Myalgia is commonly diagnosed in 
fibromyalgia, degenerative spines diseases, Parkinson’s 
disease and other neurodegenerative diseases, viral 
infection (e.g., Covid-19, influenza), myopathy, rheumatic 
diseases, metabolic disorders, and the side effects of 
medication, such as statin `(4,6,10,11). Clinical manifestations 
of myalgia include pain, soreness, tenderness, sometimes 
accompany with fatigue, weakness, redness, swelling, 
or warmth in the areas of muscle pain (12-15). Myalgia 
is usually benign and self-limited, but severe chronic 
myalgia may cause morbidity, poor quality of life, and 
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chronic myalgia remains elusive, as it is not clear whether 
tissue acidosis can contribute to nociceptor priming and 
lead to chronic muscle pain or fibromyalgia.

2.3 Mouse models of fibromyalgia

Fibromyalgia is commonly known as a stress-related 
disease triggered by either physical stress or psychological 
stress (6). However, the molecular and neurobiological 
basis underlying the development of fibromyalgia pain 
is still elusive. Although central sensitization of the pain 

Fig. 1.	 Proton-sensing ion channels involved in acid-induced chronic widespread muscle pain in the Sluka model. (A) 
The Sluka model. In wild-type (WT) mice, unilateral repeated intramuscular injections of pH4.0 acidic saline 
5 days apart can induce bilateral mechanical hyperalgesia lasting for 4 weeks. The acid-induce hyperalgesia is 
totally abolished in ASIC3 knockout (ASIC3-/-) mice. In TRPV1 knockout (TRPV1-/-) mice, acid can only induce 
transient hyperalgesia. In ASIC1b knockout (ASIC1b-/-) mice, the first acid injection evokes a weak priming effect 
but not transient hyperalgesia, so the second acid injection induces hyperalgesia lasting for 3-4 days. (B) In WT 
mice, combined ASIC1a antagonist PcTx1 in the first acid injection does not affect the acid-induced transient and 
chronic hyperalgesia. In contrast, inhibiting ASIC3 (by APETx2) or ASIC1b (by mambalgin-1, MB1) at the first 
acid injection abolished the transient hyperalgesia and priming, so that the second acid injection only induces a 
transient hyperalgesia. Inhibiting TRPV1 (by capsazepin, CZP) does not affect the first acid-induced hyperalgesia 
but shows an effect on priming, so that the second acid injection induces hyperalgesia lasting for 3-4 days. (C) 
In WT mice, combined APETx2 or MB-1 in the second acid injection prevents the development of chronic 
hyperalgesia, whereas inhibiting TRPV1by CZP in the second acid injection shows no effect on acid-induced 
chronic hyperalgesia. (Schematic drawings are based on the data of Chen et al., 2014 (41) and Chang et al., 2019 (42))
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matrix is involved in fibromyalgia pain, accumulating 
evidence has shown the importance of peripheral afferent 
inputs for the induction and maintenance of fibromyalgia 
symptoms. Therefore, several animal models have been 
established based on potential risk factors (35). Physical 
stimuli via acidosis or cold are commonly used to induce 
fibromyalgia-like pain in rodents, whereas psychological 
stress such as exposures to others pain (empathy) or 
noisy sound can induce generalized pain mimicking 
fibromyalgia-like symptoms in mice (8,36-38). 

In 2001, Sluka and colleagues developed the acidosis-
induced myalgia model (the Sluka model), in which 2 
injections of acidic saline (5 days apart) to a unilateral 
gastrocnemius muscle can induce bilateral mechanical 
hyperalgesia lasting for 4 weeks in rodents (36). The first 
intramuscular injection of pH4.0 saline induces a bilateral 
transient mechanical hyperalgesia in both hind paws 
and muscle, whereas a second acid injection to the same 

muscle in 2-5 days will lead to a bilateral long-lasting 
hyperalgesia for 4 weeks. The Sluka model provides an 
insightful concept regarding the possible myalgia origin. 
As repeated challenges of intramuscular acidosis are 
required to induce bilateral long-lasting hyperalgesia 
mimicking fibromyalgia, muscle acidosis would trigger 
several signal pathways including nociceptor priming and 
central sensitization (39).

2.4 Roles of ASIC1b, ASIC3, and TRPV1 in myalgia
In  the  S luka  mode l ,  gene t i c  knockou t  and 

pharmacological blockade approaches have reveled 
involvement of ASIC1b, ASIC3, and TRPV1 in different 
stages of the muscle acidosis-indued pain chronicity (Fig. 
1). ASIC3 knockout (KO) totally abolished the acid-
induced transient and chronic hyperalgesia, whereas 
ASIC1b KO abolished the first acid-induced transient 
hyperalgesia and shortened the second acid-induced 

Fig. 2.	 Acid sensors for sngception. In somatosensory neurons, molecular sensors for tissue acidosis include members 
of acid-sensing ion channels (ASICs), transient receptor potential (TRP) channels, two-pore potassium (K2P) 
channels, proton channels, and proton-sensing G-protein-coupled receptors.
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chronic effect (40-42). In contrast, repeated muscle acidosis 
only induced transient hyperalgesia in TRPV1 KO mice, 
suggesting a role for TRPV1 in hyperalgesic priming (41) 

(Fig. 1A). In muscle afferents, pharmacological blockade 
of ASIC3 or ASIC1b abolished the first acid injection-
induced transient hyperalgesia and hyperalgesic priming, 
so that the second acid injection only induced transient 
hyperalgesia that declined in 24 hours. While inhibiting 
TRPV1 did not affect first acid-induced transient 
hyperalgesia, the second acid-induced hyperalgesia was 
less than 7 days (Fig. 1B). In the second acid injection, 
pharmacological blockade of ASIC1b or ASIC3, but 
not TRPV1, abolished the development of chronic 
hyperalgesia (Fig. 1C). Taken together, activation of 
ASIC1b, ASIC3, and TRPV1 is required for the acid-
induced hyperalgesic priming, whereas only ASIC1b 
and ASIC3 are involved in the acid-induced transient 
hyperalgesia and repeated acidic challenges induced 
chronic hyperalgesia. Also, these studies suggest muscle 
afferents are highly heterogenous in response to muscle 
acidosis and subject to plasticity changes. Of note, apart 
from muscle afferents, previous studies also showed 
ASIC3 of resident macrophages in muscle is involved in 
the acid-induced myalgia (43).

The role of ASIC3 in myalgia has been further 
demonstrated in 2 other fibromyalgia mouse models 
induced by either intermittent cold stress (ICS) or 
repeated intermittent sound stress (RISS). Comparing 
with intramuscular acid injections, both ICS and RISS 
treatments deliver systematic stress to mice and evoke 
chronic widespread thermal and mechanical hyperalgesia 
lasting for 2-4 weeks (8,37). Interestingly, ASIC3 KO 
abolished the ICS-induced mechanical hyperalgesia of 
muscle, but showed no effect on cutaneous mechanical 
hyperalgesia. Accordingly, ICS treatment alters several 
metabolic pathways and reveals ASIC3-depedent 
metabolites (e.g., LPC16:0) are associated with the 
ICS-induced hyperalgesia (44). Although sound stress is 
considered as psychological stress, RISS-induced chronic 
hyperalgesia can be attributed to the excessive oxidative 
stress and lipid oxidation. Excessive oxidative stress 
causes lipid oxidation and upregulated lipid metabolites 
are found in fibromyalgia patients (8,15). In the RISS model, 
lipidomics analyses reveal significant up-regulation of 
lysophosphatidylcholines (LPC), phosphatidylcholines, 

sphingomyelin, and ceramides. Of note, LPC16:0 has 
been known as a non-proton ligand to activate ASIC3 
(45). Experimentally, repeated intramuscular injections of 
LPC16:0 can induce chronic mechanical hyperalgesia 
lasting for 4 weeks as that induced by repeated challenges 
of pH4.0 acidic saline. Interestingly, intramuscular 
LPC16:0 or RISS treatment can only induce transient but 
not chronic hyperalgesia in ASIC3 KO mice. Together, 
ASIC3 functions as a major molecular determinant 
to evoke hyperalgesic priming and pain chronicity in 
response to either physical or psychological stress, which 
may be a possible disease-causing factor for fibromyalgia.

3. SENSING ACIDOSIS: NOCICEPTION 
OR SNGCEPTION?

3.1 Proton-sensing ion channels and receptors in 
somatosensory neurons
Sensing acidosis is one of the most mysterious 

somatosensory functions in mammals. In rodents, 70~80% 
of somatosensory neurons are sensitive to tissue acidosis, 
which numbers are much higher than the total number 
of nociceptors (~40-50%) (46). Accordingly, single-
cell transcriptomics analyses reveal proton-sensing ion 
channels and/or receptors are expressed in all types of 
somatosensory neurons, including those are involved 
in non-nociceptive functions such as low-threshold 
tactile receptors, proprioceptors and pruriceptors (47). At 
least 5 groups of proton-sensing ion channels/receptors 
are expressed in the somatosensory nervous system, 
which include ASICs, transient receptor potential (TRP) 
channels, two-pore potassium channels (K2P), proton 
channels (Otop), proton-sensing G-protein-coupled 
receptors (Figure 2) (48). Although these proton-sensing 
molecules are involved in pain-associated with tissue 
acidosis as shown in many studies, only ASICs and TRP 
channels are particularly investigated in myalgia.

ASICs are a group of amiloride-sensitive, proton-
gated sodium channels widely expressed in the nervous 
system (49,50). In humans and rodents, there are 6 subtypes 
encoded by 4 genes have been identified (51). ASIC1a and 
ASIC1b are different at their N-terminals and encoded by 
accn2 via different promoters; ASIC2a and ASIC2b are 
different at their N-terminals and encoded by accn1 via 
different promoters. ASIC3 and ASIC4 are encoded by 
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accn3 and accn4 respectively. ASICs are trimeric channels 
assembled either by 3 homomeric or heteromeric ASIC 
subtypes (52). 

3.2 Promiscuous somatosensory functions of ASICs
All ASIC subtypes are expressed in the peripheral 

nervous system. Among ASICs, homomeric ASIC1a, 
ASIC1b, ASIC2a, and ASIC3 are functional channels with 
differential pH sensitivity, whereas ASIC2b and ASIC4 
can form heteromeric channels with other ASIC subtypes 

(53). ASIC1a and ASIC3 are highly sensitive to pH changes 
ranging from 6.2 to 6.8. In contrast, the pH sensitivity of 
ASIC1b and ASIC2a are from 5.1 to 6.2 and 4.1 to 5.0 
respectively. Accordingly, ASIC1a, ASIC1b, and ASIC3 
are involved in pain associated tissue acidosis in different 
experimental animal models, such as postoperative pain, 
ischemic pain, inflammatory pain, arthritic pain, and 
muscle pain (48). 

Intriguingly, t issue acidosis not only evokes 
pronociceptive effects to induce transient hyperalgesia and 
hyperalgesic priming, but also mediates an antinociceptive 
signaling in mouse models of fibromyalgia induced by 
intramuscular injections of acidic buffer (41). The acidosis-
mediated antinociceptive signaling can be observed, 
when both ASIC3 and TRPV1 are inhibited. Although 
the non-ASIC3, non-TRPV1 acid sensors involved 
in anti-nociceptive signaling are yet to determine, 
ASIC1a might be a possible candidate, as ASIC1a plays 
an antinociceptive role in dextrose prolotherapy (54). 
Paradoxically, although ASIC3 is well characterized in 
its pronociceptive role in myalgia and many chronic pain 
models, activation of ASIC3 via therapeutic ultrasound 
can induce an antinociceptive effect in mouse models of 
fibromyalgia (55). Apart from their acid-sensing properties, 
evidence has shown ASICs are mechanically sensitive and 
involved in mechanotransduction of proprioceptors and 
baroreceptors (56-59). The roles of ASICs in neurosensory 
mechanot ransduct ion  have  a lso  been  shown in 
mechanoreceptors of skin, gastrointestinal tract, urinary 
bladder, auditory and vestibular system, periodontal 
ligment and pulp teeth (60,61).

Taken together, the somatosensory functions of 
ASICs include nociception, antinociceptive signaling, and 
mechanortansduction

3.3 Sngception
Since acidosis signaling is promiscuous in the 

somatosensory nervous system and the acid-sensitive 
sensory neurons are out number of nociceptors, we should 
consider it is a distinguishable sensation from nociception 
and the corresponding perception might be not pain either 
(48). We have thus coined the term sngception to address 
the somatosensory function of sensing acidosis, in which 
sng (pronounced as /səŋ/) is the corresponding perception 
of acid sensation (46). Sng is the Romanization form of 
a Taiwanese word 痠 (or equilibrium to soreness in 
English), which is commonly used to describe the specific 
acid-like phenotypes distinct from pain. In Taiwan, sng 
is typically used in muscle soreness associated with 
fatiguing exercise, virus infection, adverse effects of statin 
treatment, fibromyalgia, or degenerative spine diseases 
(15,18,46). Of note, soreness is defined as pain in English, 
so sng would be a better term to distinguish it from pain 
(46). In individuals with fibromyalgia, sng and pain can be 
clearly diagnosed as 2 different symptoms and attributed to 
different metabolomic and proteomic alterations in serum 
and urine (13,15,62). In fibromyalgia, sng is more intractable 
than pain and the distribution of sng (or morbid soreness) 
is not associated with pain in most of the body regions (15). 
Also, fibromyalgia sng is associated with oxidative stress 
and LPC16:0 upregulation, suggesting the involvement of 
ASIC3-mediated signaling. 

Taken together, Sng and sngception is a new 
pathological pathway worthy of in-depth investigation 
clinically and basically for myalgia associated with tissue 
acidosis.

4. AN ANTINOCICEPTIVE ROLE FOR 
SUBSTANCE P IN MYALGIA

In preclinical studies, acid-sensation or sngception 
is not only pro-nociceptive, but also anti-nociceptive 
(48). Especially, in the Sluka model, muscle acidosis can 
activate the non-ASIC3, non-TRPV1 acid sensors of 
muscle afferents to induce a prolonged antinociceptive 
signaling lasting for 2 days. This acid-mediated anti-
nociceptive signaling requires the release of substance 
P from muscle afferents (63). Interestingly, while proton-
sensing ion channels of ASIC1a, ASIC3, and TRPV1 
can also mediate an antinociceptive effect in response to 
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dextrose prolotherapy, therapeutic ultrasound, and low-
level laser therapy respectively, the release of substance P 
from muscle afferents is a determined step shared among 
these physical therapy approaches (54,55,64). Substance 
P is a neuropeptide discovered in 1930s and has been 
recognized as a pain neurotransmitter since 1960s (65-68). In 
many animal models, upon noxious stimuli, nociceptors 
release substance P from their peripheral terminals to 
induce neurogenic inflammation and lead to peripheral 
sensitization; and from their central terminals to potentiate 
NMDA receptors and facilitate central sensitization (69). 
Increased levels of substance P in CSF have been found 
in fibromyalgia patients (70). However, the role of spinal 
substance P in pain modulation remains puzzle. Murphy 
and Zemlan (1987) showed that intrathecal injection of 
substance P induced hyperalgesia in naïve rats, whereas 
substance P could inhibit serotonin-induced spinal 
nociceptive reflexes (71). In peripherals, intramuscular 
injection of substance P neither evokes pain nor induces 
neurogenic inflammation in humans (28). In contrast, we 
have previously shown muscular substance P acts on 
NK1R to mediate an antinociceptive signaling in muscle 
afferents by activating Kv7 potassium via a G-protein-
independent, but tyrosine kinase-dependent manner (72). 
In the Sluka model, intramuscular substance P signaling 
can prevent the acid-induced hyperalgesic priming, 
whereas a single acid injection can directly lead to chronic 
hyperalgesia in mice lacking substance P (63,72).

Together, sngception can be antinociceptive via the 
release of substance P from muscle afferents, which is 
a shared signal pathway among many forms of physical 
therapy. The substance P-dependent antinociceptive 
signaling would be an ideal opioid-independent solution 
for intractable myalgia.

5. PERSPECTIVES AND 
CONCLUSION:

Based on the mouse models and clinical studies, 
acidosis is an effective risk factor to evoke myalgia 
associated fibromyalgia. From the molecular aspect, 
ASIC3 is a major molecular hub to trigger myalgia in 
response to physical stressors (e.g., acidosis or cold) or 
psychosocial stressors (e.g., sound stress) and repeated 
and/or intermittent activating ASIC3 would lead to 

chronic widespread muscle pain mimicking fibromyalgia 
symptoms. Also, ASIC1b and TRPV1 are essential acid 
sensors for myalgia. Paradoxically, activation of ASIC3 
on muscle afferents via therapeutic ultrasound would 
trigger a substance P-dependent antinociceptive signaling 
to alleviate the fibromyalgia-like pain in mouse models. 
As ASICs are a trimeric channel, different compositions 
of ASIC3-containing channels might be differentially 
expressed in pro-nociceptive and anti-nociceptive muscle 
afferents. Further investigation of how sngception 
(acid-sensation) is executed in muscle afferents in a 
neuron subtype-specific manner would warrant a better 
understanding of myalgia and provide therapeutic insights 
for fibromyalgia.
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