
53

Acta Neurologica Taiwanica Vol 31  No 2 June 2022

Review Article

health issue with global increases in population size and 
life expectancy(1). Dementia confers an enormous burden 
on patients, their families and caregivers, and on health 
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INTRODUCTION

Alzheimer disease (AD) has become a widespread 
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Abstract
This review addresses recent developments in the analyses of plasma amyloid beta (Aβ) and total 

tau (t-tau) protein levels as biomarkers for discriminating amnestic mild cognitive impairment (aMCI) 
from Alzheimer disease (AD), using immunomagnetic reduction (IMR). Recent studies have focused on 
the differential diagnosis of normal controls (NCs) with aMCI or AD. Results of 15 clinical studies have 
demonstrated decrease in plasma Aβ1–40 and increase in plasma Aβ1–42 and t-tau levels in patients 
with aMCI and AD. For a given biomarker, effect size is determined by comparing the mean ratios of 
biomarker levels between two diagnostic groups. Effect sizes are <1 for Aβ1–40 (0.606–1.032) but >1 
for Aβ1–42 (1.018–2.167) and t-tau (1.030–4.147) in aMCI and AD compared with NCs. The effect size 
of the plasma tau significantly increases the most as aMCI progresses to AD. Studies into the application 
of IMR to determine plasma Aβ and tau levels as biomarkers for aMCI or AD have recently progressed. 
Future investigations should validate recently published results, preferably in patients with pathologically 
confirmed AD. In addition, effort should be directed toward standardizing the design of such studies and 
data analysis.
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and social care systems(2). The pathological hallmarks 
of Alzheimer disease (AD) are amyloid β (Aβ) plaques 
and tau neurofibrillary tangles(3–6). The accumulation of 
pathological Aβ plaques and tau protein tangles causes 
neuronal damage, which subsequently lead to hippocampal 
atrophy, cortical thinning, and brain damage(7,8). Amnestic 
mild cognitive impairment (aMCI) is a heterogeneous, 
symptomatic pre-dementia phase that represents a 
transitional state between normal aging and dementia, 
and often AD(9). The annual conversion rate from aMCI 
to dementia ranges from <5% to 20% depending on the 
population investigated(10). 

Over the past decade, substantial effort has been 
directed toward the early diagnosis of aMCI or dementia 
using various biomarkers. Current biomarkers comprise 
apolipoprotein E ε4 (APOE ε4) carrier status, atrophy 
confirmed by structural magnetic resonance imaging 
(MRI), hypometabolism confirmed by fluorodeoxyglucose 
F 18-positron emission tomography (FDG-PET), and 
cerebrospinal fluid (CSF) biomarkers, such as amyloid 
β 1–42 peptide (Aβ1–42), total tau (t-tau), and tau 
phosphorylated at threonine 181 (p-tau181)(11). Positive 
positron emission (PET) imaging of the brain uses a 
tracer that specifically binds Aβ or tau to identify amyloid 
plaques and tau protein tangles(12–15). However, the high 
cost of PET and low availability of Aβ or tau tracers limit 
its clinical application(16–19). However, concentrations of 
AD-related biomarkers in body fluids are altered due 
to the formation of Aβ plaques and tau protein in the 
brain as cognitive impairment develops in patients with 
AD. Hence, diagnosing AD based on measurements of 
potential biomarkers in CSF such as Aβ and tau, and their 
derivatives has become popular(20,21). Although Aβ and tau 
levels in CSF significantly correlate with standard uptake 
value ratios (SUVR) with Aβ or tau tracers(22–24), CSF 
sampling is invasive and comparatively uncomfortable for 
patients. Moreover, side effects, such as headache, spinal 
or epidural bleeding, minor nerve damage due to lumbar 
puncture, have prevented the detection of CSF biomarkers 
for broad screening, or resampling to monitor long-term 
disease progression or treatment effects. Consequently, 
neuropsychological examinations remain the most popular 
means of diagnosing Alzheimer disease(25,26). Therefore, 
biomarkers in biological specimens other than CSF are 
needed.

Blood proteins can be conveniently measured and 
serve as biomarkers. However, biomarkers of AD circulate 
in the bloodstream at pg/mL levels. Ultrasensitive 
analytical assays, such as immunomagnetic reduction 
(IMR), immunoprecipitation mass spectrometry (IP-
MS), and single-molecule array (SIMOA) have shown 
potential for more accurately quantifying biomarkers 
in blood samples. Plasma Aβ and tau can be accurately 
quantified at levels of 1–10 pg/mL using IMR(27–30). The 
protocol for IMR includes magnetic nanoparticles that 
are functionalized with antibodies and homogeneously 
suspended in phosphate-buffered saline (PBS). Under 
external alternative-current (ac) magnetic fields, the 
nanoparticles oscillate to generate an ac magnetic signal. 
Magnetic nanoparticles that associate with a target 
biomarker expand, which causes a reduction in the ac 
magnetic signal. A target biomarker is then quantified 
as ac magnetic signal attenuation(30). Recent findings 
have revealed significant correlations between plasma 
biomarker levels and cognitive impairment(31–33), brain 
atrophy, and Aβ accumulation in the brain(34–37), which 
provide evidence that assays of plasma Aβ1–40, Aβ1–42 
or tau using IMR are promising for facilitating an early 
diagnosis of AD. This review focuses on the results of 
15 clinical studies in which plasma Aβ and tau were 
determined using IMR(31,32,34–36,38–42,43–46). One each of these 
studies were from the USA, Europe, Japan, and China, 
and 11 were from Taiwan. We compared the effect sizes of 
plasma Aβ1–40, Aβ1–42, and tau among normal controls 
(NCs), aMCI and AD as described in these studies.

BRIEF DEMOGRAPHIC 
INFORMATION OF REPORTED CASES

Patients were diagnosed in the studies in Taiwan and 
the USA based on the guidelines issued by the National 
Institute on Aging-Alzheimer’s Association (NIA-AA) 
workgroups in 2011. In addition to these guidelines, 
Aβ plaque accumulation in the patients with AD was 
confirmed using Pittsburgh compound B (PiB)-PET in the 
Chinese study. Neuropsychological tests and FDG-PET 
were compulsory for all patients in the Japanese study. 
The European patients were diagnosed with AD based on 
Aβ1–42 and tau levels in CSF. Table 1 shows the numbers, 
age, gender, mini-mental state examination (MMSE) 
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findings of patients in various diagnostic 
groups among the studies. The average age 
and MMSE findings of individual patients in 
the diagnostic groups were provided in each 
study. 

A total of 658, 303, and 478 reported 
controls and patients with aMCI and AD were 
aged 63.0–81.9, 68.0–75.6, and 64.9–82.5 
years, respectively. The ages of the patients 
with aMCI and AD did not significantly 
differ among the studies. The ratios (%) of 
females in the NC, aMCI and AD groups were 
32.6%–80.8%, 38.2%–75.0%, and 42.9%–
84.2%, respectively, and the MMSE scores 
were 28.2–29.3, 24.2–26.9 and 12.7–21.6, 
respectively, indicating a significant decrease 
as dementia progressed.

PLASMA PREPARATION AND 
BIOMARKER ASSAY

Non-fasting venous blood samples (6 or 9 
mL) were collected into lavender-topped tubes 
containing EDTA. Plasma was separated from 
blood samples within 3 h by centrifugation 
at 2,500 × g for 15 min, then portioned into 
cryotubes for storage at -80°C. Thawed 
plasma samples (40/60/40 µL) were mixed 
with 80/60/80 µL of the IMR reagents MF-
Aβ0-0060, MF-Aβ2-0060, MF-TAU-0060 
to assay Aβ1–40/Aβ1–42/tau in duplicate 
using a XacPro-S IMR analyzer (MagQu Co., 
Ltd., New Taipei City, Taiwan). The results 
are expressed as the average concentrations 
of biomarkers in duplicate plasma samples. 

PLASMA Aβ1-40
The mean concentrations of plasma 

Aβ1–40 levels in the NC, aMCI, and AD 
groups were 50.70–65.84, 40.60–52.81, and 
36.90–53.21 pg/mL, respectively (Table 
1). The overall plasma Aβ1–40 levels were 
significantly lower in aMCI and AD, than in 
NC . A ratio-based method was applied to 
identify effect sizes (ES) as mean biomarker 
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ratios to distinguish different groups. In Study No. 1(31), 
the effect size of Aβ1–40 between aMCI and NC was 
47.98/65.84 = 0.729. 

Recent IMR studies have found that the range of 
effect sizes of plasma Aβ1–40 between aMCI and NC is 
0.673–1.024 (Figure 1 unfilled symbols). Plasma Aβ1–40 
notably remained at similar levels between aMCI and NC 
in studies 6 (effect size: 1.002), 13 (effect size: 1.024), and 
15 (effect size: 0.970) (Table 1). These values significantly 
differed from other findings that showed obvious decreases 
in plasma Aβ1–40 levels in aMCI compared with NC 
(effect size: 0.673–0.849, p < 0.001). The effect sizes of 
plasma Aβ1–40 were similar between AD and NC (Fig. 
1a; filled symbols). The effect sizes of plasma Aβ1–40 
between AD and NC in studies 6, 13 and 15 were 0.998, 
1.032, and 0.994, respectively, compared with 0.606–0.824 
(p < 0.001) in other studies. Variations in plasma sample 
preparation procedures might have contributed to the 
discrepancies. Blood samples were centrifuged at 4℃ in 
studies 6, 13, and 15 but at room temperature (20–25℃) 
in the other studies. The reasons for the variations in the 
measured plasma Aβ1–40 levels at different centrifugation 
temperatures are not clear. Appropriate temperatures need 
to be established, and sample preparation protocols must 
be standardized. 

Plasma Aβ1–42
The plasma Aβ1–42 levels ranges from 14.65–16.92, 

17.00–22.66, and 16.80–34.22 pg/ml in NC, aMCI, and 
AD, respectively (Table1). All studies found increased 
plasma Aβ1–42 levels in patients with aMCI and AD, 
compared with NC. The effect sizes of plasma Aβ1–42 
between aMCI and NC and between AD and NC were 
1.018–1.435, and 1.030–2.167 (Figure 1b unfilled and 
filled symbols, respectively). Increased plasma Aβ-
1–42  concentrations in aMCI and AD using IMR are 
inconsistent with previous findings using other analytical 
methods such as single molecule assays or mass 
spectrometry. These different methodological approaches 
with variable capacity with respect to Aβ aggregation 
or Aβ binding to other proteins might partly explain the 
variances(42).

The consistent findings across all studies that plasma 
Aβ1–42 is significantly elevated in aMCI and AD implies 
that plasma Aβ1–42 could serve as a useful biomarker 
to help differentiate aMCI/AD from NC. Chiu et al.(32) 

validated the cut-off plasma Aβ1–42 concentration 
required to discriminate aMCI and AD as 16.41 pg/mL. 
The corresponding sensitivity, specificity, and accuracy 
were 0.882, 0.952, and 0.919, respectively. Furthermore, 
the findings of longitudinal studies(47) associated elevated 
plasma Aβ1–42 levels >16.8 pg/mL with a 17-fold higher 
risk of cognitive decline in patients with aMCI, and 
another study(46) found a significant correlation between 
plasma Aβ1–42 and a rapid cognitive decline in aMCI 
during an average followup of 1.2 years.

Fig. 1.  Effect sizes of plasma (a) Aβ1–40 (b) Aβ1–42 (c) tau levels between aMCI and NC (unfilled symbols), between 
AD and NC (filled symbols).
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Plasma tau 
The reported ranges of plasma tau concentrations are 

13.30–23.80, 26.00–33.50, and 25.91–55.44 pg/mL in NC, 
aMCI, and AD, respectively (Table1). All reports described 
higher plasma tau levels in aMCI and AD than in NC, 
which agrees with the plasma Aβ1–42 values. The findings 
indicated that plasma tau could also serve as a biomarker 
to differentiate aMCI/AD from NC. The feasibility of 
this has been demonstrated(32). At a plasma tau cut-off of 
24.9 pg/mL, the sensitivity, specificity, and accuracy of 
discriminating aMCI/AD from NC were 0.892, 0.955, and 
0.961, respectively(32). The ranges of effect sizes of plasma 
tau levels between aMCI and NC and between AD and NC 
were 1.030–2.493 and 1.139– 4.147, respectively (Figure 
1c; unfilled and filled symbols, respectively). Plasma tau 
has a larger effect size than plasma Aβ1–42 (Figure 1b and 
c), indicating more significant changes in plasma tau than 
plasma Aβ1–42 concentrations in patients with aMCI and 
AD. However, elevated plasma tau levels are not specific 
to aMCI or AD. Increased plasma tau levels are also found 
in frontotemporal dementia(38), Parkinson disease(38)(48), 
and vascular cognitive impairment(49). Therefore, plasma 
Tau is not ideal as a singular biomarker with which to 
differentially diagnose aMCI and AD.

Severity-dependent biomarkers
The filled and unfilled symbols in Figure 1a almost 

overlap, which implies no significant changes in plasma 
Aβ1–40 concentrations between AD and aMCI. In 
contrast, plasma Aβ1–42 and tau levels were elevated 
in AD compared with aMCI (Figure 1b and c), which 
consistently supported the severity dependence of plasma 
Aβ1–42 and tau levels in AD. Furthermore, Figure 2 
shows that concentrations of plasma Aβ1–42 and tau, but 
not Aβ1–40, vary from NC to aMCI to AD, indicating 
that combined plasma Aβ1–42 and tau levels could 
potentially discriminate aMCI from NC, and AD from 
aMCI. To enhance plasma biomarker levels in aMCI and 
AD, some authors have suggested that measuring Aβ1–
42xtau, instead of individual Aβ1–42 or tau, offers better 
sensitivity, specificity and accuracy in differentiating 
aMCI from NC, AD from aMCI(32,33,40,50). 

CONCLUSIONS

Following the standard procedures to prepare plasma 
samples for IMR assays described in 15 studies published 
between 2012 and 2020, the results consistently showed 
significant decreases in plasma levels of Aβ1–40 and 
increases in those of Aβ1–42 and tau in aMCI and AD. 
Furthermore, plasma Aβ1–42 and tau levels are related 
to the severity of AD. To achieve clear discrimination 
among NC, aMCI, and AD, a combination of Aβ1–42xtau 
biomarkers should be measured in clinics. However, 
more detailed analyses are necessary to comprehend 
their advantages as potential diagnostic, monitoring, 
or prognostic biomarkers of aMCI, and AD. A triage 
algorithm based on current blood biomarkers is crucial 
to identify patients who might be eligible for further 
assessment using the current gold standard for identifying 
AD pathology (CSF and/or amyloid PET) and for 
inclusion in clinical trials. After validation, a triage 
algorithm would facilitate AD drug discovery and effective 
disease-modifying strategies for treating AD. 
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