EEG Manifestations in Metabolic Encephalopathy

Chou-Ching K. Lin

Abstract- Normal brain function depends on normal neuronal metabolism, which is closely related to systemic homeostasis of metabolites, such as glucose, electrolytes, amino acids and ammonia. “Metabolic encephalopathy” indicates diffuse brain dysfunction caused by various systemic derangements. Electroencephalogram (EEG) is widely used to evaluate metabolic encephalopathy since 1937, when Berger first observed slow brain activity induced by hypoglycemia.

EEG is most useful in differentiating organic from psychiatric conditions, identifying epileptogenicity, and providing information about the degree of cortical or subcortical dysfunction. In metabolic encephalopathy, EEG evolution generally correlates well with the severity of encephalopathy. However, EEG has little specificity in differentiating etiologies in metabolic encephalopathy. For example, though triphasic waves are most frequently mentioned in hepatic encephalopathy, they can also be seen in uremic encephalopathy, or even in aged psychiatric patients treated with lithium. Spike-and-waves may appear in hyper- or hypo-glycemia, uremic encephalopathy, or vitamin deficiencies, etc.

Common principles of EEG changes in metabolic encephalopathy are (1) varied degrees of slowing, (2) assorted mixtures of epileptic discharge, (3) high incidence of triphasic waves, and (4), as a rule, reversibility after treatment of underlying causes. There are some exceptions to the above descriptions in specific metabolic disorders and EEG manifestations are highly individualized.

Key Words: Metabolic encephalopathy, EEG
代謝性腦病變的腦波表現

林宙晴

摘 要

正常的腦功能需要正常的神經代謝來維持，而正常的神經代謝與全身代謝物諸如葡萄糖、電解質、胺基酸和氧之平衡穩定有密切關係。代謝性腦病變意謂由各種全身系統性代謝失調所造成的瀰漫性腦功能失常。自從 Berger 在1937年首先在低血糖症患者腦波觀察到慢波，腦波圖被用來評估和監測代謝性腦病變已有多年歷史。

腦波對於區分結構性或精神性病情、確認癲癇和評估大腦皮質和皮質下功能失調之嚴重程度最有用。在代謝性腦病變，腦波變化和腦病變的嚴重程度通常有很好的相關性。然而，腦波對於鑑別診斷各類代謝疾病幾乎毫無幫助。舉例而言，雖然三相波最常在肝病性腦病變出現，在腎病性腦病變，甚至在中老年人服用鈣鹽的患者也會出現。而高血糖、低血糖、腎病性腦病變和維生素缺乏症亦會出現。

腦波變化在代謝性腦病變的一般準則包括：(1)腦波變慢的程度不一；(2)常混雜各式各樣的癲癇波；(3)常見三相波；(4)當代謝疾病改善時，腦波也隨之改善。當然上述準則在各種代謝性疾病中有些例外。同時，腦波在每個患者的表現也有很大的變異性。

關鍵字：代謝性腦病變，腦波圖

Acta Neurol Taiwan 2005;14:152-161

前 言

神經系統的正常運作依賴穩定平衡的全身性代謝功能。神經系統主要依靠電訊號來傳遞訊息，而電訊號的產生和傳導需要持續的能量供應和穩定的離子環境。據估計，肝臟製造的葡萄糖有75%為大腦所消耗，由此可知代謝功能對神經系統的重要性。

由於大多數代謝異常疾病屬於內科範疇。大部分內科醫師對於腦波並不熟悉，而專研腦波之研究

國立成功大學醫學中心神經科

發文日期：2005年7月11日。

修改及接受日期：2005年8月12日。

通訊作者：林宙睛醫師。國立成功大學醫學中心神經科，
台南市勝利路138號。
E-mail: CXL45@mail.ncku.edu.tw

Acta Neurologica Taiwanica Vol 14 No 3 September 2005
者和神經科醫師對代謝異常疾病並沒有太多專注，因此代謝異常疾病和腦波之關係除了一些零星的報告之外並沒有非常詳盡的研究。

早期 Berger(1) 首先注意到治療精神分裂患者而以肝素處方治療時腦波會出現慢波。Foley et al.(2) 和Bickford & Butt(3) 指出肝昏迷患者腦波有三相波和明顯的慢波。MacGillivary(4) 報告慢性腎功能不足患者雖然持續洗腎仍會出現腎病性腦波病變和腦波變化。之後的研究顯示其代謝異常也引起腦波的變化。

產生代謝性腦病變 (metabolic encephalopathy) 之疾病

何謂代謝性腦病變，並沒有非常確定的定義。較狹窄的定義認為是身體代謝所需物質供應不正常所引起的腦病變，而較廣泛的定義則泛指任何次發性的腦病變，包括先天性或後天性之代謝異常、血管病變和身體其他器官病變、外來化學物質和藥物，甚至腦膜炎和一些顱內出血(5)。本文並不嘗試給予精確定義，僅依較廣泛的定義列舉大類，然後對較常見的病因而加以描述。

引起代謝性腦病變的疾病大致可以分為四大類（表）。第一類疾病涉及大腦所需的氧氣、血液、養分或代謝因子。缺氧的原因主要為肺部疾病和血流攜氧能力降低。缺水的原因主要為心臟疾病、周邊血管擴張、腦循環阻力增加和腦部小血管病變。缺鈣的原因則與全身性代謝有關。代謝因子異常多屬於維他命缺乏症候群。第二類疾病為身體各代謝相關系統的疾病，諸如肝、腎、內分泌腺以及各種離子平衡。第三類為外來之藥物和毒物，包括鎮定麻醉藥劑、化學藥品和重金屬。第四類為產生直接影響中樞神經毒素之疾病，如腦炎、腦膜炎和韌帶膜下出血。最後還有一些無法歸類於上述各項分類的疾病如腦血症、發燒和手術後谵妄(delirium)。

病理機轉

在病理機轉方面，目前並沒有一致的看法。幾個較為可能的理論大類包括血腦屏障 (blood-brain barrier) 之失調、生化和神經傳導物質之比例 (profile) 和血管性因素。

由於可以產生代謝性腦病變的疾病眾多且性質不同，因此很可能不同疾病的致病機轉並不相同，臨床上看到之表徵和症狀只是大腦功能異常之共通表現。在微觀病理檢查，組織型態的變化不見得在每個病患都會出現。常見的型態變化包括神經組織水腫和壞死，以及在星狀細胞 (astrocyte) 出現類似阿茨海默症第二型細胞之變化。

在代謝性腦病變常見之腦波變化

在其他腦波變化出現的腦波變化對代謝性腦病變都可出現，只是代謝性腦病變的腦波變化一般都是漫性的，較少區域性變化。這些變化包括(6)：

1. 背景波變慢 (background slow activity)
2. 瀰漫性連續波慢 (diffuse continuous slow activity)
3. 瀰漫性背景波抑制 (diffuse background suppression)
4. 瀰漫性循環慢波 (diffuse intermittent slow activity)
5. 瀰漫性循環規律慢波 (diffuse intermittent rhythmic slow activity)
6. 週期性波形 (periodic patterns)
7. 週期性一側顱腦波 (periodic leateralized epileptiform discharge, PLED)
8. 三相波 (triphasic wave)
9. 突波抑制 (burst suppression)
10. 在昏迷患者出現之特殊腦波波形 (special EEG patterns seen in patients in coma)

表

造成代謝性腦病變之病因大類

<table>
<thead>
<tr>
<th>病因大類</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 呼吸系統疾病及氧氣、血液、養分及代謝因子之疾病</td>
</tr>
<tr>
<td>2. 腦組織主要代謝相關系統之疾病，如肝、腎和內分泌系統</td>
</tr>
<tr>
<td>3. 腦外藥物和化學物質</td>
</tr>
<tr>
<td>4. 腦生直接影響中樞神經毒素之疾病</td>
</tr>
<tr>
<td>5. 其他無法歸類之疾病</td>
</tr>
</tbody>
</table>

Acta Neurologica Taiwanica Vol 14 No 3 September 2005
如α波、θ波和梭波(spindle)昏迷。

这些波形可分三类，第一类代表大脑皮质(cortical)功能异常，第二类为大脑皮质下(subcortical)功能异常，而第三类为大脑激发性增加。在同一病患，这些波形常常混杂一起出现。

“背景波变慢”代表的是轻微的大脑皮质功能异常，通常是疾病早期的表现。随着病情严重化，背景波逐渐消失而由频率较慢之波形所取代，此时称为“瀰漫性连续慢波”。慢波的大小(高、低)可能会如同正常α波有大小起伏变化，但通常会比正常背景α波来得大。当病情更加恶化时，脑波逐渐变小，此时称为“瀰漫性背景波抑制”，最后甚至完全无法辨认(isoelectric)。“突波抑制”一般的定義是持续大于一秒而多相大振幅的突波与振幅小于10µV的抑制期交替出现。其所代表的是严重的脑皮质和皮质下功能异常影响的范围已经囊括中脑附近。

突波的时距可能固定也有不固定的。一研究显示使用苯巴比妥(Phenobarbital)所造成的突波抑制，其突波出现的规律性和突波频率较无相关。而由缺氧缺血所造成的则有类似关系。

“瀰漫间歇性波形”所出现的波形波形通常较其同波形波形相似，其代表的是大脑皮质下(亦即白质或深部构造)之功能异常。“瀰漫间歇性规律波形”所代表意义和瀰漫间歇性波形类似，由于其较具规律性因此可能是较深层之脑干之波形产生器异常所产生。

“温感性一側癇癇放電”代表的是一侧大脑激发性增加，通常是急性脑组织破坯如脑炎和脑梗塞所产生。随着急性期过去，虽然脑痛并没有恢复，此型脑波逐渐消失。“三相波”是代谢性脑病变中最常被提及的脑波特征之一，以下另段描述。最后有一些特殊脑波波形，如α波、θ波和梭波昏迷，通常代表大脑反应不佳。α波昏迷时，α波分佈并不侷限于脑部后方是瀰漫性的，同时不具备正常背景α波对外来光的反应性及睡眠状大小变化(fusiform wax-and-wane)。出现α波昏迷时，死亡率超过90%。反之，梭波昏迷则出现类似睡眠第二期的特徵，一般认为代表脑幹功能失調，预后通常良好。

三相波

三相波最初在肝病性脑病变发现，因有负相＝正相＝负相之型态而得名(图一)。第一个负相高度较短時間较短，紧接着正相波，最後是缓和而時間較長的負相。典型的特徵包括两侧对称而同步出现、脑部前方较明显、脑部后方有些短時間差和通常以小群組(约1.5至2.5Hz)的方式出现。三相中之第一個負相有時型態相當尖鋒而會與棘波類似，需要注意鑑識。尤其在一些代谢性脑病变(如

![图一. 三相波(虚线所示)。如文中所述，先有一尖小之负波，跟随一较大之正波，最後是一缓和之负波。](image-url)
圖二．(A) 穩定慢性腎衰竭患者之腦波，幾乎正常；(B) 隔天血磷降低時背景波稍微變慢；(C) 數月之後一次急性腎功能變差，腦波呈現漸進間歇性慢波。
肝病性和腎病性腦病變），三相波和棘波可能同時存在。

三相波首先在肝病性腦病變發現，後來觀察顯示雖然在肝病性和腎病性腦病變比例最高，大部分代謝性腦病變都有可能出現，甚至在其他之腦病變或使用鉛鹽之精神病患者也會出現。因此不能以三相波來診斷代謝性腦病變，更不能以三相波來鑑別診斷疾病。過去研究顯示各式各樣量化三相波之形態特徵（例如腦波前後三相波之時間差和相位反轉位置）對於疾病之鑑別診斷也沒有助益。但是昏迷病患或腦波背景波相當混亂的患者，出現三相波代表預後不佳。

以腦波來定量昏迷程度及疾病嚴重程度

腦波對於意識清醒程度的變化相當敏感，但是個體基礎背景波的變異很大，因此不易由單獨一次腦波記錄來判斷意識清醒程度。反之，腦波用於系列追蹤或連續記錄，可以把握很細微的意識變化。

過去一些學者嘗試將腦波分類，並與昏迷程度建立相關性。由於其中關係複雜，腦波分類若太簡單則無法表現臨床昏迷之全貌，若腦波分類太複雜則臨床運用困難，因此目前尚無一廣泛接受使用之系統。

有些研究嘗試建立某些常見的異常腦波形態與特殊疾病發生率的關係，但都不太成功。整體而言腦波在排除一些非代謝性腦病變之疾病，諸如精神疾病和無抽搐癲癇（non-convulsive seizure）時更為有用15”。以腦波來預測後療並不準確，亦即腦波的混亂程度和疾病的嚴重程度沒有正比關係。通常腦波變化和疾病之發生速率也有關係。例如緩慢成長之腦瘤或慢性腎衰竭往往不會造成明顯的腦波變化。圖二所舉之案例顯示一穩定之慢性腎衰竭患者腦波接近正常，當血糖過低時則出現慢波（背景波變慢），而急性腎衰竭時則出現明確的變化（瀰漫性慢波）。有研究顯示腦波對封閉性腦外傷和心肺停止之預後有較好的預測性16。

常見代謝性腦病變之個論

肝病性腦病變

肝病變早期在神經學方面的症狀包括構體性失用症（constructional apraxia）、心智功能降低、失張性僵直（asterixis）、類巴金森氏症步態和肌腱反射下降。病患之意識清醒程度隨肝功能異常程度而下降。

在致病機轉方面，尚無單一機轉可以解釋所有的現象，有可能是許多機轉同時作用。這些機轉包括高血氨、血清基酸濃度異常、游離脂肪酸增加和血腦屏障通透性增加16。圖三總結致病機轉。整體而
圖四. (A) 一子癲症患者生產前之腦波，呈現頻疊性連續慢波加上逐漸間歇性慢波；(B) 生產後三天腦波圖迅速恢復到少數之α波加θ波；(C) 三週後追蹤已完全正常。
言，正常肝臟負責代謝腸胃道吸收之物質（包括食物和消化道細菌代謝物），當肝功能下降時，吸收物質的代謝不完整導致它們在血液中的含量上升。加上血腦障壁通透性增加，導致這些物質在腦脊髓液中的含量增加而影響腦功能。許多證據顯示由氨和α-ketoglutarate結合而產生的Glutamine與腦機能失調的嚴重程度有很高的相關性”。短鏈脂肪酸在腦脊髓液中也會增加，而動物實驗顯示這種狀態會產生類似肝性腦病變的腦波變化“。

肝病並不一定會產生明顯的腦波變化。腦波變化的程度和病生理機轉有關，如門脈系統腦病變和巨大肝細胞衰竭。以基底核症狀為主的患者（如威爾森氏症，Wilson's disese），腦波幾乎沒有什麼變化。α波在早期肝病階段可能不會受到影響。偶而會有極短的慢波插入取代α波然後迅速消失。隨著疾病進展，腦波變慢，變慢的程度和血氨濃度升高平行。在肝病性腦病變病中出現三相波的發生率約為25%。

腎性腦病變

雖然過去有非常多的研究所顯示許多生化變化與腎性腦波病變有關，到目前為止，並沒有確定何者為主要的病理機轉。

急性尿毒症引起之腦病變的臨床表現包括激動不安（agitation）、意識混亂（confusion）、肢體震顫、肌躍、昏迷以及癲癇發作等等。大多數的腦波表現不規律低振幅的慢波，混雜著偶發的δ bursts。另外也可能混雜著兩側同步性的慢波及尖波，甚或是明確的棘波。在急性腎性腦病變中出現三相波的機率在25%以下。

慢性尿毒症病患在長期洗腎的狀況下其臨床症狀及腦波表現一般處於穩定的狀態。在血液中尿素氮（urea nitrogen）有大幅變化時，腦波的狀況也會有相對應的表現，例如出現廣泛的慢波。而8-9%的病人臨床上沒有癲癇現象但腦波會有陣發性全腦性棘慢複合波（bursts of generalized spike-and-wave）的出現。此外亦有報告慢性尿毒症的病人腦波表現出光驅動反應（photic driving response）增大，以及在昏迷病狀下出現一長段高振幅的12-13 Hz波和頂頂觸波（vertex sharp waves）增強現象等等。

與血糖相關的腦病變

在低血糖的狀態下，病人常會有意識障礙的情形或類似中風的局部神經學症狀，腦皮質的活動會比較腦部深部組織早些消失。然而，血糖的數值，腦波狀態以及臨床意識狀況這三者不見得必然平行變化。換言之，意識狀態以及腦波變化和血糖下降的速度有較密切關係，而與血糖絕對值之相關性較低。低血糖腦病變的腦波變化因人而異。多數表現出廣泛的慢波及銷融波形。一般而言低血糖腦病變發生的是全身性癲癇。但亦有病例報告因胰島素瘤（insulinoma）引起的低血糖產生複雜性發作。低血糖腦病變的共通特色是一旦中斷低血糖，其腦波也會迅速地恢復正常。

高血糖可分為兩大類：高血糖高滲透壓性酮症昏迷（HHNK）和糖尿病酮症酸中毒（DKA）。如眾所知，HHNK較易出現臨床的局部性癲癇。其腦波表現常是混雜著快波及慢波，以及偶爾的癲癇波。由於酮體（Ketone body）會抑制癲癇發作“，因此DKA主要是表現出明確的慢波。

子癇症（Eclampsia gravidarum）

子癇症是癲癇腦波會有變慢的情形，尤其以枕葉部份最為明顯，偶爾會有局部或全面性的癲癇波形。生産後這樣的腦波表現可以迅速獲得改善（圖四）。

電解質相關的腦病變

低血鈣的主病變是強直症（tetany），也可能造成反應遲鈍和意識混雑。嚴重的血鈣過低（血鈣值5-6 mg/100 ml）容易引起癲癇發作。在此時腦波表現出明確的慢波構築著局部或全面陣發性的癲癇波（generalized bursts of spikes）（圖五）。

高血鈣症以中樞神經系統的併發症為主。病人血鈣高於13 mg/100 ml時就可能會出現神經學症狀，意識障礙及併發腦波的變化。少見發生癲癇。腦波主要呈現慢波，可能混雜1-2 Hz的δ bursts，亦可能出現三相波。
低鈣血症的腦波大部份呈現廣泛性或全面性的慢波，可能會有棘慢複合波 (spike-and-wave) 的出現。值得注意的是，與低血糖症不同，即使血鈣值已矯正腦波的變化仍需要一段時間纔會恢復正常。

圖五．一位血鈣患者之腦波顯示左前額有些棘慢波，患者因頭痛而求診。

維生素及內分泌異常

維生素 B12 缺乏症在臨床上的著名表現是 subacute combined degeneration，意識障礙及失智。病人出現脊髓病變或周邊神經病變時不見得會有腦波異常，而有中樞神經症狀時會有腦波變慢和間歇性規律慢波的情形（圖六），有些患者甚有頸葉區域的棘波或尖波。

Addison's disease 嘗試於腎上腺功能低下，可能因造成糖代謝的異常而引起腦波變慢。這樣的腦
Cushing’s syndrome 與 Addison’s disease 相較，較少引起腦波的變化。但是引起的腦波變化類似高血壓症，混合著慢波和快波。

甲狀腺機能亢進常見使腦波中的 α 波頻率加快，或是出現快波（15-30 Hz），也有可能出現 α 波波或是皮質中 γ 波波強化。相反的，甲狀腺機能低下表現出低振幅的慢波。在成人中會產生 α 波波抑制的缺損。

缺氧性腦病變

某些文獻將缺氧性腦病變歸入代謝性腦病變的一環。與絕大多數代謝性腦病變不同的是，缺氧性腦病變有很大的比例是不可逆的，而腦波可以作為預測缺氧性腦病變預後的一個可靠指標。

急性中樞型昏迷症

中樞神經表現於中樞症狀，常出現非兩側對稱之慢波和躁動波。癲癇發作相當常見，但由於一般抗癲癇藥物會誘發昏迷症發作，因此治療癲癇是一大問題，目前建議使用的藥物是 Gabapentin。

代謝性腦病變和睡眠

對於代謝性腦病變患者睡眠狀態之研究很少。甚至在嚴重意識不清的情況下如何定義睡眠也不清楚。有學者認爲睡眠時腦波會趨於正常化，但是並沒有確切的研究報告支持這種看法。在代謝性腦病變的患 者，無間斷睡眠期時延但三相波在睡眠時由減少。對於門脈主靜脈分流型肝病性腦波病（porto-caval encephalopathy）的一項研究顯示病情輕微時，熟睡和慢波睡眠時間減少且入睡期增加。當病情加重時，一般判斷慢波睡眠的準則已經不適用，腦波出現病態慢波，但是睡眠期仍會間歇出現。除非病情非常嚴重，睡眠的週期性（動眼和非動眼睡眠交替）不會消失。對於急性腦病和腦幹外傷患者，無法辨認出睡眠腦波型態者預後較差。另一研究顯示缺氧後昏迷病患中，會出現睡眠梭波者預後不見得較好，但是沒有者預後較差。

結語

代謝性腦病變所引起的腦波變化非常多樣化，且多數為“非特殊性”變化，因此並未引起重視。但由上述可知，腦波記錄可以提供細微變化的證據。腦波為非侵入性、時間解析度高、病情反應時間短且可長時間監視。考慮這些優點，若更常使用腦波加以研究，應可發現腦波在代謝性腦病變的價值比目前一般所認為的來得更高。

參考文獻

161